Highest Common Factor of 3862, 1082 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3862, 1082 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 3862, 1082 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3862, 1082 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3862, 1082 is 2.

HCF(3862, 1082) = 2

HCF of 3862, 1082 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3862, 1082 is 2.

Highest Common Factor of 3862,1082 using Euclid's algorithm

Highest Common Factor of 3862,1082 is 2

Step 1: Since 3862 > 1082, we apply the division lemma to 3862 and 1082, to get

3862 = 1082 x 3 + 616

Step 2: Since the reminder 1082 ≠ 0, we apply division lemma to 616 and 1082, to get

1082 = 616 x 1 + 466

Step 3: We consider the new divisor 616 and the new remainder 466, and apply the division lemma to get

616 = 466 x 1 + 150

We consider the new divisor 466 and the new remainder 150,and apply the division lemma to get

466 = 150 x 3 + 16

We consider the new divisor 150 and the new remainder 16,and apply the division lemma to get

150 = 16 x 9 + 6

We consider the new divisor 16 and the new remainder 6,and apply the division lemma to get

16 = 6 x 2 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 3862 and 1082 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(16,6) = HCF(150,16) = HCF(466,150) = HCF(616,466) = HCF(1082,616) = HCF(3862,1082) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3862, 1082 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3862, 1082?

Answer: HCF of 3862, 1082 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3862, 1082 using Euclid's Algorithm?

Answer: For arbitrary numbers 3862, 1082 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.