Highest Common Factor of 387, 664, 732 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 387, 664, 732 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 387, 664, 732 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 387, 664, 732 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 387, 664, 732 is 1.

HCF(387, 664, 732) = 1

HCF of 387, 664, 732 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 387, 664, 732 is 1.

Highest Common Factor of 387,664,732 using Euclid's algorithm

Highest Common Factor of 387,664,732 is 1

Step 1: Since 664 > 387, we apply the division lemma to 664 and 387, to get

664 = 387 x 1 + 277

Step 2: Since the reminder 387 ≠ 0, we apply division lemma to 277 and 387, to get

387 = 277 x 1 + 110

Step 3: We consider the new divisor 277 and the new remainder 110, and apply the division lemma to get

277 = 110 x 2 + 57

We consider the new divisor 110 and the new remainder 57,and apply the division lemma to get

110 = 57 x 1 + 53

We consider the new divisor 57 and the new remainder 53,and apply the division lemma to get

57 = 53 x 1 + 4

We consider the new divisor 53 and the new remainder 4,and apply the division lemma to get

53 = 4 x 13 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 387 and 664 is 1

Notice that 1 = HCF(4,1) = HCF(53,4) = HCF(57,53) = HCF(110,57) = HCF(277,110) = HCF(387,277) = HCF(664,387) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 732 > 1, we apply the division lemma to 732 and 1, to get

732 = 1 x 732 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 732 is 1

Notice that 1 = HCF(732,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 387, 664, 732 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 387, 664, 732?

Answer: HCF of 387, 664, 732 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 387, 664, 732 using Euclid's Algorithm?

Answer: For arbitrary numbers 387, 664, 732 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.