Highest Common Factor of 389, 626, 471 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 389, 626, 471 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 389, 626, 471 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 389, 626, 471 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 389, 626, 471 is 1.

HCF(389, 626, 471) = 1

HCF of 389, 626, 471 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 389, 626, 471 is 1.

Highest Common Factor of 389,626,471 using Euclid's algorithm

Highest Common Factor of 389,626,471 is 1

Step 1: Since 626 > 389, we apply the division lemma to 626 and 389, to get

626 = 389 x 1 + 237

Step 2: Since the reminder 389 ≠ 0, we apply division lemma to 237 and 389, to get

389 = 237 x 1 + 152

Step 3: We consider the new divisor 237 and the new remainder 152, and apply the division lemma to get

237 = 152 x 1 + 85

We consider the new divisor 152 and the new remainder 85,and apply the division lemma to get

152 = 85 x 1 + 67

We consider the new divisor 85 and the new remainder 67,and apply the division lemma to get

85 = 67 x 1 + 18

We consider the new divisor 67 and the new remainder 18,and apply the division lemma to get

67 = 18 x 3 + 13

We consider the new divisor 18 and the new remainder 13,and apply the division lemma to get

18 = 13 x 1 + 5

We consider the new divisor 13 and the new remainder 5,and apply the division lemma to get

13 = 5 x 2 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 389 and 626 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(13,5) = HCF(18,13) = HCF(67,18) = HCF(85,67) = HCF(152,85) = HCF(237,152) = HCF(389,237) = HCF(626,389) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 471 > 1, we apply the division lemma to 471 and 1, to get

471 = 1 x 471 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 471 is 1

Notice that 1 = HCF(471,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 389, 626, 471 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 389, 626, 471?

Answer: HCF of 389, 626, 471 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 389, 626, 471 using Euclid's Algorithm?

Answer: For arbitrary numbers 389, 626, 471 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.