Highest Common Factor of 3897, 8163 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3897, 8163 i.e. 9 the largest integer that leaves a remainder zero for all numbers.

HCF of 3897, 8163 is 9 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3897, 8163 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3897, 8163 is 9.

HCF(3897, 8163) = 9

HCF of 3897, 8163 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3897, 8163 is 9.

Highest Common Factor of 3897,8163 using Euclid's algorithm

Highest Common Factor of 3897,8163 is 9

Step 1: Since 8163 > 3897, we apply the division lemma to 8163 and 3897, to get

8163 = 3897 x 2 + 369

Step 2: Since the reminder 3897 ≠ 0, we apply division lemma to 369 and 3897, to get

3897 = 369 x 10 + 207

Step 3: We consider the new divisor 369 and the new remainder 207, and apply the division lemma to get

369 = 207 x 1 + 162

We consider the new divisor 207 and the new remainder 162,and apply the division lemma to get

207 = 162 x 1 + 45

We consider the new divisor 162 and the new remainder 45,and apply the division lemma to get

162 = 45 x 3 + 27

We consider the new divisor 45 and the new remainder 27,and apply the division lemma to get

45 = 27 x 1 + 18

We consider the new divisor 27 and the new remainder 18,and apply the division lemma to get

27 = 18 x 1 + 9

We consider the new divisor 18 and the new remainder 9,and apply the division lemma to get

18 = 9 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 9, the HCF of 3897 and 8163 is 9

Notice that 9 = HCF(18,9) = HCF(27,18) = HCF(45,27) = HCF(162,45) = HCF(207,162) = HCF(369,207) = HCF(3897,369) = HCF(8163,3897) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3897, 8163 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3897, 8163?

Answer: HCF of 3897, 8163 is 9 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3897, 8163 using Euclid's Algorithm?

Answer: For arbitrary numbers 3897, 8163 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.