Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 390, 540 i.e. 30 the largest integer that leaves a remainder zero for all numbers.
HCF of 390, 540 is 30 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 390, 540 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 390, 540 is 30.
HCF(390, 540) = 30
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 390, 540 is 30.
Step 1: Since 540 > 390, we apply the division lemma to 540 and 390, to get
540 = 390 x 1 + 150
Step 2: Since the reminder 390 ≠ 0, we apply division lemma to 150 and 390, to get
390 = 150 x 2 + 90
Step 3: We consider the new divisor 150 and the new remainder 90, and apply the division lemma to get
150 = 90 x 1 + 60
We consider the new divisor 90 and the new remainder 60,and apply the division lemma to get
90 = 60 x 1 + 30
We consider the new divisor 60 and the new remainder 30,and apply the division lemma to get
60 = 30 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 30, the HCF of 390 and 540 is 30
Notice that 30 = HCF(60,30) = HCF(90,60) = HCF(150,90) = HCF(390,150) = HCF(540,390) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 390, 540?
Answer: HCF of 390, 540 is 30 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 390, 540 using Euclid's Algorithm?
Answer: For arbitrary numbers 390, 540 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.