Highest Common Factor of 3902, 2749 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3902, 2749 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3902, 2749 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3902, 2749 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3902, 2749 is 1.

HCF(3902, 2749) = 1

HCF of 3902, 2749 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3902, 2749 is 1.

Highest Common Factor of 3902,2749 using Euclid's algorithm

Highest Common Factor of 3902,2749 is 1

Step 1: Since 3902 > 2749, we apply the division lemma to 3902 and 2749, to get

3902 = 2749 x 1 + 1153

Step 2: Since the reminder 2749 ≠ 0, we apply division lemma to 1153 and 2749, to get

2749 = 1153 x 2 + 443

Step 3: We consider the new divisor 1153 and the new remainder 443, and apply the division lemma to get

1153 = 443 x 2 + 267

We consider the new divisor 443 and the new remainder 267,and apply the division lemma to get

443 = 267 x 1 + 176

We consider the new divisor 267 and the new remainder 176,and apply the division lemma to get

267 = 176 x 1 + 91

We consider the new divisor 176 and the new remainder 91,and apply the division lemma to get

176 = 91 x 1 + 85

We consider the new divisor 91 and the new remainder 85,and apply the division lemma to get

91 = 85 x 1 + 6

We consider the new divisor 85 and the new remainder 6,and apply the division lemma to get

85 = 6 x 14 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3902 and 2749 is 1

Notice that 1 = HCF(6,1) = HCF(85,6) = HCF(91,85) = HCF(176,91) = HCF(267,176) = HCF(443,267) = HCF(1153,443) = HCF(2749,1153) = HCF(3902,2749) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3902, 2749 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3902, 2749?

Answer: HCF of 3902, 2749 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3902, 2749 using Euclid's Algorithm?

Answer: For arbitrary numbers 3902, 2749 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.