Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 391, 555, 942 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 391, 555, 942 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 391, 555, 942 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 391, 555, 942 is 1.
HCF(391, 555, 942) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 391, 555, 942 is 1.
Step 1: Since 555 > 391, we apply the division lemma to 555 and 391, to get
555 = 391 x 1 + 164
Step 2: Since the reminder 391 ≠ 0, we apply division lemma to 164 and 391, to get
391 = 164 x 2 + 63
Step 3: We consider the new divisor 164 and the new remainder 63, and apply the division lemma to get
164 = 63 x 2 + 38
We consider the new divisor 63 and the new remainder 38,and apply the division lemma to get
63 = 38 x 1 + 25
We consider the new divisor 38 and the new remainder 25,and apply the division lemma to get
38 = 25 x 1 + 13
We consider the new divisor 25 and the new remainder 13,and apply the division lemma to get
25 = 13 x 1 + 12
We consider the new divisor 13 and the new remainder 12,and apply the division lemma to get
13 = 12 x 1 + 1
We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get
12 = 1 x 12 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 391 and 555 is 1
Notice that 1 = HCF(12,1) = HCF(13,12) = HCF(25,13) = HCF(38,25) = HCF(63,38) = HCF(164,63) = HCF(391,164) = HCF(555,391) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 942 > 1, we apply the division lemma to 942 and 1, to get
942 = 1 x 942 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 942 is 1
Notice that 1 = HCF(942,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 391, 555, 942?
Answer: HCF of 391, 555, 942 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 391, 555, 942 using Euclid's Algorithm?
Answer: For arbitrary numbers 391, 555, 942 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.