Highest Common Factor of 392, 638, 221 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 392, 638, 221 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 392, 638, 221 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 392, 638, 221 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 392, 638, 221 is 1.

HCF(392, 638, 221) = 1

HCF of 392, 638, 221 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 392, 638, 221 is 1.

Highest Common Factor of 392,638,221 using Euclid's algorithm

Highest Common Factor of 392,638,221 is 1

Step 1: Since 638 > 392, we apply the division lemma to 638 and 392, to get

638 = 392 x 1 + 246

Step 2: Since the reminder 392 ≠ 0, we apply division lemma to 246 and 392, to get

392 = 246 x 1 + 146

Step 3: We consider the new divisor 246 and the new remainder 146, and apply the division lemma to get

246 = 146 x 1 + 100

We consider the new divisor 146 and the new remainder 100,and apply the division lemma to get

146 = 100 x 1 + 46

We consider the new divisor 100 and the new remainder 46,and apply the division lemma to get

100 = 46 x 2 + 8

We consider the new divisor 46 and the new remainder 8,and apply the division lemma to get

46 = 8 x 5 + 6

We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get

8 = 6 x 1 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 392 and 638 is 2

Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(46,8) = HCF(100,46) = HCF(146,100) = HCF(246,146) = HCF(392,246) = HCF(638,392) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 221 > 2, we apply the division lemma to 221 and 2, to get

221 = 2 x 110 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 221 is 1

Notice that 1 = HCF(2,1) = HCF(221,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 392, 638, 221 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 392, 638, 221?

Answer: HCF of 392, 638, 221 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 392, 638, 221 using Euclid's Algorithm?

Answer: For arbitrary numbers 392, 638, 221 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.