Highest Common Factor of 392, 681, 930 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 392, 681, 930 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 392, 681, 930 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 392, 681, 930 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 392, 681, 930 is 1.

HCF(392, 681, 930) = 1

HCF of 392, 681, 930 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 392, 681, 930 is 1.

Highest Common Factor of 392,681,930 using Euclid's algorithm

Highest Common Factor of 392,681,930 is 1

Step 1: Since 681 > 392, we apply the division lemma to 681 and 392, to get

681 = 392 x 1 + 289

Step 2: Since the reminder 392 ≠ 0, we apply division lemma to 289 and 392, to get

392 = 289 x 1 + 103

Step 3: We consider the new divisor 289 and the new remainder 103, and apply the division lemma to get

289 = 103 x 2 + 83

We consider the new divisor 103 and the new remainder 83,and apply the division lemma to get

103 = 83 x 1 + 20

We consider the new divisor 83 and the new remainder 20,and apply the division lemma to get

83 = 20 x 4 + 3

We consider the new divisor 20 and the new remainder 3,and apply the division lemma to get

20 = 3 x 6 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 392 and 681 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(20,3) = HCF(83,20) = HCF(103,83) = HCF(289,103) = HCF(392,289) = HCF(681,392) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 930 > 1, we apply the division lemma to 930 and 1, to get

930 = 1 x 930 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 930 is 1

Notice that 1 = HCF(930,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 392, 681, 930 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 392, 681, 930?

Answer: HCF of 392, 681, 930 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 392, 681, 930 using Euclid's Algorithm?

Answer: For arbitrary numbers 392, 681, 930 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.