Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3968, 8579, 19180 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 3968, 8579, 19180 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 3968, 8579, 19180 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 3968, 8579, 19180 is 1.
HCF(3968, 8579, 19180) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 3968, 8579, 19180 is 1.
Step 1: Since 8579 > 3968, we apply the division lemma to 8579 and 3968, to get
8579 = 3968 x 2 + 643
Step 2: Since the reminder 3968 ≠ 0, we apply division lemma to 643 and 3968, to get
3968 = 643 x 6 + 110
Step 3: We consider the new divisor 643 and the new remainder 110, and apply the division lemma to get
643 = 110 x 5 + 93
We consider the new divisor 110 and the new remainder 93,and apply the division lemma to get
110 = 93 x 1 + 17
We consider the new divisor 93 and the new remainder 17,and apply the division lemma to get
93 = 17 x 5 + 8
We consider the new divisor 17 and the new remainder 8,and apply the division lemma to get
17 = 8 x 2 + 1
We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get
8 = 1 x 8 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3968 and 8579 is 1
Notice that 1 = HCF(8,1) = HCF(17,8) = HCF(93,17) = HCF(110,93) = HCF(643,110) = HCF(3968,643) = HCF(8579,3968) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 19180 > 1, we apply the division lemma to 19180 and 1, to get
19180 = 1 x 19180 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 19180 is 1
Notice that 1 = HCF(19180,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 3968, 8579, 19180?
Answer: HCF of 3968, 8579, 19180 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 3968, 8579, 19180 using Euclid's Algorithm?
Answer: For arbitrary numbers 3968, 8579, 19180 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.