Highest Common Factor of 3977, 2487 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 3977, 2487 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 3977, 2487 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 3977, 2487 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 3977, 2487 is 1.

HCF(3977, 2487) = 1

HCF of 3977, 2487 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 3977, 2487 is 1.

Highest Common Factor of 3977,2487 using Euclid's algorithm

Highest Common Factor of 3977,2487 is 1

Step 1: Since 3977 > 2487, we apply the division lemma to 3977 and 2487, to get

3977 = 2487 x 1 + 1490

Step 2: Since the reminder 2487 ≠ 0, we apply division lemma to 1490 and 2487, to get

2487 = 1490 x 1 + 997

Step 3: We consider the new divisor 1490 and the new remainder 997, and apply the division lemma to get

1490 = 997 x 1 + 493

We consider the new divisor 997 and the new remainder 493,and apply the division lemma to get

997 = 493 x 2 + 11

We consider the new divisor 493 and the new remainder 11,and apply the division lemma to get

493 = 11 x 44 + 9

We consider the new divisor 11 and the new remainder 9,and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3977 and 2487 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(493,11) = HCF(997,493) = HCF(1490,997) = HCF(2487,1490) = HCF(3977,2487) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 3977, 2487 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 3977, 2487?

Answer: HCF of 3977, 2487 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 3977, 2487 using Euclid's Algorithm?

Answer: For arbitrary numbers 3977, 2487 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.