Highest Common Factor of 402, 904, 433, 43 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 402, 904, 433, 43 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 402, 904, 433, 43 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 402, 904, 433, 43 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 402, 904, 433, 43 is 1.

HCF(402, 904, 433, 43) = 1

HCF of 402, 904, 433, 43 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 402, 904, 433, 43 is 1.

Highest Common Factor of 402,904,433,43 using Euclid's algorithm

Highest Common Factor of 402,904,433,43 is 1

Step 1: Since 904 > 402, we apply the division lemma to 904 and 402, to get

904 = 402 x 2 + 100

Step 2: Since the reminder 402 ≠ 0, we apply division lemma to 100 and 402, to get

402 = 100 x 4 + 2

Step 3: We consider the new divisor 100 and the new remainder 2, and apply the division lemma to get

100 = 2 x 50 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 402 and 904 is 2

Notice that 2 = HCF(100,2) = HCF(402,100) = HCF(904,402) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 433 > 2, we apply the division lemma to 433 and 2, to get

433 = 2 x 216 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 433 is 1

Notice that 1 = HCF(2,1) = HCF(433,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 43 > 1, we apply the division lemma to 43 and 1, to get

43 = 1 x 43 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 43 is 1

Notice that 1 = HCF(43,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 402, 904, 433, 43 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 402, 904, 433, 43?

Answer: HCF of 402, 904, 433, 43 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 402, 904, 433, 43 using Euclid's Algorithm?

Answer: For arbitrary numbers 402, 904, 433, 43 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.