Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 403, 767, 792 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 403, 767, 792 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 403, 767, 792 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 403, 767, 792 is 1.
HCF(403, 767, 792) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 403, 767, 792 is 1.
Step 1: Since 767 > 403, we apply the division lemma to 767 and 403, to get
767 = 403 x 1 + 364
Step 2: Since the reminder 403 ≠ 0, we apply division lemma to 364 and 403, to get
403 = 364 x 1 + 39
Step 3: We consider the new divisor 364 and the new remainder 39, and apply the division lemma to get
364 = 39 x 9 + 13
We consider the new divisor 39 and the new remainder 13, and apply the division lemma to get
39 = 13 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 13, the HCF of 403 and 767 is 13
Notice that 13 = HCF(39,13) = HCF(364,39) = HCF(403,364) = HCF(767,403) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 792 > 13, we apply the division lemma to 792 and 13, to get
792 = 13 x 60 + 12
Step 2: Since the reminder 13 ≠ 0, we apply division lemma to 12 and 13, to get
13 = 12 x 1 + 1
Step 3: We consider the new divisor 12 and the new remainder 1, and apply the division lemma to get
12 = 1 x 12 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 13 and 792 is 1
Notice that 1 = HCF(12,1) = HCF(13,12) = HCF(792,13) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 403, 767, 792?
Answer: HCF of 403, 767, 792 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 403, 767, 792 using Euclid's Algorithm?
Answer: For arbitrary numbers 403, 767, 792 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.