Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4040, 4193 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 4040, 4193 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 4040, 4193 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 4040, 4193 is 1.
HCF(4040, 4193) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 4040, 4193 is 1.
Step 1: Since 4193 > 4040, we apply the division lemma to 4193 and 4040, to get
4193 = 4040 x 1 + 153
Step 2: Since the reminder 4040 ≠ 0, we apply division lemma to 153 and 4040, to get
4040 = 153 x 26 + 62
Step 3: We consider the new divisor 153 and the new remainder 62, and apply the division lemma to get
153 = 62 x 2 + 29
We consider the new divisor 62 and the new remainder 29,and apply the division lemma to get
62 = 29 x 2 + 4
We consider the new divisor 29 and the new remainder 4,and apply the division lemma to get
29 = 4 x 7 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4040 and 4193 is 1
Notice that 1 = HCF(4,1) = HCF(29,4) = HCF(62,29) = HCF(153,62) = HCF(4040,153) = HCF(4193,4040) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 4040, 4193?
Answer: HCF of 4040, 4193 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 4040, 4193 using Euclid's Algorithm?
Answer: For arbitrary numbers 4040, 4193 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.