Highest Common Factor of 406, 7279, 9224 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 406, 7279, 9224 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 406, 7279, 9224 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 406, 7279, 9224 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 406, 7279, 9224 is 1.

HCF(406, 7279, 9224) = 1

HCF of 406, 7279, 9224 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 406, 7279, 9224 is 1.

Highest Common Factor of 406,7279,9224 using Euclid's algorithm

Highest Common Factor of 406,7279,9224 is 1

Step 1: Since 7279 > 406, we apply the division lemma to 7279 and 406, to get

7279 = 406 x 17 + 377

Step 2: Since the reminder 406 ≠ 0, we apply division lemma to 377 and 406, to get

406 = 377 x 1 + 29

Step 3: We consider the new divisor 377 and the new remainder 29, and apply the division lemma to get

377 = 29 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 29, the HCF of 406 and 7279 is 29

Notice that 29 = HCF(377,29) = HCF(406,377) = HCF(7279,406) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9224 > 29, we apply the division lemma to 9224 and 29, to get

9224 = 29 x 318 + 2

Step 2: Since the reminder 29 ≠ 0, we apply division lemma to 2 and 29, to get

29 = 2 x 14 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 29 and 9224 is 1

Notice that 1 = HCF(2,1) = HCF(29,2) = HCF(9224,29) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 406, 7279, 9224 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 406, 7279, 9224?

Answer: HCF of 406, 7279, 9224 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 406, 7279, 9224 using Euclid's Algorithm?

Answer: For arbitrary numbers 406, 7279, 9224 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.