Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 408, 261, 520 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 408, 261, 520 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 408, 261, 520 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 408, 261, 520 is 1.
HCF(408, 261, 520) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 408, 261, 520 is 1.
Step 1: Since 408 > 261, we apply the division lemma to 408 and 261, to get
408 = 261 x 1 + 147
Step 2: Since the reminder 261 ≠ 0, we apply division lemma to 147 and 261, to get
261 = 147 x 1 + 114
Step 3: We consider the new divisor 147 and the new remainder 114, and apply the division lemma to get
147 = 114 x 1 + 33
We consider the new divisor 114 and the new remainder 33,and apply the division lemma to get
114 = 33 x 3 + 15
We consider the new divisor 33 and the new remainder 15,and apply the division lemma to get
33 = 15 x 2 + 3
We consider the new divisor 15 and the new remainder 3,and apply the division lemma to get
15 = 3 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 408 and 261 is 3
Notice that 3 = HCF(15,3) = HCF(33,15) = HCF(114,33) = HCF(147,114) = HCF(261,147) = HCF(408,261) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 520 > 3, we apply the division lemma to 520 and 3, to get
520 = 3 x 173 + 1
Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 1 and 3, to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 520 is 1
Notice that 1 = HCF(3,1) = HCF(520,3) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 408, 261, 520?
Answer: HCF of 408, 261, 520 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 408, 261, 520 using Euclid's Algorithm?
Answer: For arbitrary numbers 408, 261, 520 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.