Highest Common Factor of 408, 711, 201 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 408, 711, 201 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 408, 711, 201 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 408, 711, 201 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 408, 711, 201 is 3.

HCF(408, 711, 201) = 3

HCF of 408, 711, 201 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 408, 711, 201 is 3.

Highest Common Factor of 408,711,201 using Euclid's algorithm

Highest Common Factor of 408,711,201 is 3

Step 1: Since 711 > 408, we apply the division lemma to 711 and 408, to get

711 = 408 x 1 + 303

Step 2: Since the reminder 408 ≠ 0, we apply division lemma to 303 and 408, to get

408 = 303 x 1 + 105

Step 3: We consider the new divisor 303 and the new remainder 105, and apply the division lemma to get

303 = 105 x 2 + 93

We consider the new divisor 105 and the new remainder 93,and apply the division lemma to get

105 = 93 x 1 + 12

We consider the new divisor 93 and the new remainder 12,and apply the division lemma to get

93 = 12 x 7 + 9

We consider the new divisor 12 and the new remainder 9,and apply the division lemma to get

12 = 9 x 1 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 408 and 711 is 3

Notice that 3 = HCF(9,3) = HCF(12,9) = HCF(93,12) = HCF(105,93) = HCF(303,105) = HCF(408,303) = HCF(711,408) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 201 > 3, we apply the division lemma to 201 and 3, to get

201 = 3 x 67 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 201 is 3

Notice that 3 = HCF(201,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 408, 711, 201 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 408, 711, 201?

Answer: HCF of 408, 711, 201 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 408, 711, 201 using Euclid's Algorithm?

Answer: For arbitrary numbers 408, 711, 201 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.