Highest Common Factor of 408, 922, 825 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 408, 922, 825 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 408, 922, 825 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 408, 922, 825 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 408, 922, 825 is 1.

HCF(408, 922, 825) = 1

HCF of 408, 922, 825 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 408, 922, 825 is 1.

Highest Common Factor of 408,922,825 using Euclid's algorithm

Highest Common Factor of 408,922,825 is 1

Step 1: Since 922 > 408, we apply the division lemma to 922 and 408, to get

922 = 408 x 2 + 106

Step 2: Since the reminder 408 ≠ 0, we apply division lemma to 106 and 408, to get

408 = 106 x 3 + 90

Step 3: We consider the new divisor 106 and the new remainder 90, and apply the division lemma to get

106 = 90 x 1 + 16

We consider the new divisor 90 and the new remainder 16,and apply the division lemma to get

90 = 16 x 5 + 10

We consider the new divisor 16 and the new remainder 10,and apply the division lemma to get

16 = 10 x 1 + 6

We consider the new divisor 10 and the new remainder 6,and apply the division lemma to get

10 = 6 x 1 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 408 and 922 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(10,6) = HCF(16,10) = HCF(90,16) = HCF(106,90) = HCF(408,106) = HCF(922,408) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 825 > 2, we apply the division lemma to 825 and 2, to get

825 = 2 x 412 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 825 is 1

Notice that 1 = HCF(2,1) = HCF(825,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 408, 922, 825 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 408, 922, 825?

Answer: HCF of 408, 922, 825 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 408, 922, 825 using Euclid's Algorithm?

Answer: For arbitrary numbers 408, 922, 825 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.