Highest Common Factor of 411, 736, 171 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 411, 736, 171 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 411, 736, 171 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 411, 736, 171 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 411, 736, 171 is 1.

HCF(411, 736, 171) = 1

HCF of 411, 736, 171 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 411, 736, 171 is 1.

Highest Common Factor of 411,736,171 using Euclid's algorithm

Highest Common Factor of 411,736,171 is 1

Step 1: Since 736 > 411, we apply the division lemma to 736 and 411, to get

736 = 411 x 1 + 325

Step 2: Since the reminder 411 ≠ 0, we apply division lemma to 325 and 411, to get

411 = 325 x 1 + 86

Step 3: We consider the new divisor 325 and the new remainder 86, and apply the division lemma to get

325 = 86 x 3 + 67

We consider the new divisor 86 and the new remainder 67,and apply the division lemma to get

86 = 67 x 1 + 19

We consider the new divisor 67 and the new remainder 19,and apply the division lemma to get

67 = 19 x 3 + 10

We consider the new divisor 19 and the new remainder 10,and apply the division lemma to get

19 = 10 x 1 + 9

We consider the new divisor 10 and the new remainder 9,and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 411 and 736 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(19,10) = HCF(67,19) = HCF(86,67) = HCF(325,86) = HCF(411,325) = HCF(736,411) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 171 > 1, we apply the division lemma to 171 and 1, to get

171 = 1 x 171 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 171 is 1

Notice that 1 = HCF(171,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 411, 736, 171 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 411, 736, 171?

Answer: HCF of 411, 736, 171 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 411, 736, 171 using Euclid's Algorithm?

Answer: For arbitrary numbers 411, 736, 171 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.