Highest Common Factor of 414, 851, 196, 23 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 414, 851, 196, 23 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 414, 851, 196, 23 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 414, 851, 196, 23 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 414, 851, 196, 23 is 1.

HCF(414, 851, 196, 23) = 1

HCF of 414, 851, 196, 23 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 414, 851, 196, 23 is 1.

Highest Common Factor of 414,851,196,23 using Euclid's algorithm

Highest Common Factor of 414,851,196,23 is 1

Step 1: Since 851 > 414, we apply the division lemma to 851 and 414, to get

851 = 414 x 2 + 23

Step 2: Since the reminder 414 ≠ 0, we apply division lemma to 23 and 414, to get

414 = 23 x 18 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 23, the HCF of 414 and 851 is 23

Notice that 23 = HCF(414,23) = HCF(851,414) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 196 > 23, we apply the division lemma to 196 and 23, to get

196 = 23 x 8 + 12

Step 2: Since the reminder 23 ≠ 0, we apply division lemma to 12 and 23, to get

23 = 12 x 1 + 11

Step 3: We consider the new divisor 12 and the new remainder 11, and apply the division lemma to get

12 = 11 x 1 + 1

We consider the new divisor 11 and the new remainder 1, and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 23 and 196 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(23,12) = HCF(196,23) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 23 > 1, we apply the division lemma to 23 and 1, to get

23 = 1 x 23 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 23 is 1

Notice that 1 = HCF(23,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 414, 851, 196, 23 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 414, 851, 196, 23?

Answer: HCF of 414, 851, 196, 23 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 414, 851, 196, 23 using Euclid's Algorithm?

Answer: For arbitrary numbers 414, 851, 196, 23 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.