Highest Common Factor of 415, 142, 771 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 415, 142, 771 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 415, 142, 771 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 415, 142, 771 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 415, 142, 771 is 1.

HCF(415, 142, 771) = 1

HCF of 415, 142, 771 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 415, 142, 771 is 1.

Highest Common Factor of 415,142,771 using Euclid's algorithm

Highest Common Factor of 415,142,771 is 1

Step 1: Since 415 > 142, we apply the division lemma to 415 and 142, to get

415 = 142 x 2 + 131

Step 2: Since the reminder 142 ≠ 0, we apply division lemma to 131 and 142, to get

142 = 131 x 1 + 11

Step 3: We consider the new divisor 131 and the new remainder 11, and apply the division lemma to get

131 = 11 x 11 + 10

We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get

11 = 10 x 1 + 1

We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 415 and 142 is 1

Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(131,11) = HCF(142,131) = HCF(415,142) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 771 > 1, we apply the division lemma to 771 and 1, to get

771 = 1 x 771 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 771 is 1

Notice that 1 = HCF(771,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 415, 142, 771 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 415, 142, 771?

Answer: HCF of 415, 142, 771 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 415, 142, 771 using Euclid's Algorithm?

Answer: For arbitrary numbers 415, 142, 771 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.