Highest Common Factor of 419, 565, 168 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 419, 565, 168 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 419, 565, 168 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 419, 565, 168 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 419, 565, 168 is 1.

HCF(419, 565, 168) = 1

HCF of 419, 565, 168 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 419, 565, 168 is 1.

Highest Common Factor of 419,565,168 using Euclid's algorithm

Highest Common Factor of 419,565,168 is 1

Step 1: Since 565 > 419, we apply the division lemma to 565 and 419, to get

565 = 419 x 1 + 146

Step 2: Since the reminder 419 ≠ 0, we apply division lemma to 146 and 419, to get

419 = 146 x 2 + 127

Step 3: We consider the new divisor 146 and the new remainder 127, and apply the division lemma to get

146 = 127 x 1 + 19

We consider the new divisor 127 and the new remainder 19,and apply the division lemma to get

127 = 19 x 6 + 13

We consider the new divisor 19 and the new remainder 13,and apply the division lemma to get

19 = 13 x 1 + 6

We consider the new divisor 13 and the new remainder 6,and apply the division lemma to get

13 = 6 x 2 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 419 and 565 is 1

Notice that 1 = HCF(6,1) = HCF(13,6) = HCF(19,13) = HCF(127,19) = HCF(146,127) = HCF(419,146) = HCF(565,419) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 168 > 1, we apply the division lemma to 168 and 1, to get

168 = 1 x 168 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 168 is 1

Notice that 1 = HCF(168,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 419, 565, 168 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 419, 565, 168?

Answer: HCF of 419, 565, 168 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 419, 565, 168 using Euclid's Algorithm?

Answer: For arbitrary numbers 419, 565, 168 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.