Highest Common Factor of 42, 66, 308, 709 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 42, 66, 308, 709 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 42, 66, 308, 709 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 42, 66, 308, 709 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 42, 66, 308, 709 is 1.

HCF(42, 66, 308, 709) = 1

HCF of 42, 66, 308, 709 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 42, 66, 308, 709 is 1.

Highest Common Factor of 42,66,308,709 using Euclid's algorithm

Highest Common Factor of 42,66,308,709 is 1

Step 1: Since 66 > 42, we apply the division lemma to 66 and 42, to get

66 = 42 x 1 + 24

Step 2: Since the reminder 42 ≠ 0, we apply division lemma to 24 and 42, to get

42 = 24 x 1 + 18

Step 3: We consider the new divisor 24 and the new remainder 18, and apply the division lemma to get

24 = 18 x 1 + 6

We consider the new divisor 18 and the new remainder 6, and apply the division lemma to get

18 = 6 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 6, the HCF of 42 and 66 is 6

Notice that 6 = HCF(18,6) = HCF(24,18) = HCF(42,24) = HCF(66,42) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 308 > 6, we apply the division lemma to 308 and 6, to get

308 = 6 x 51 + 2

Step 2: Since the reminder 6 ≠ 0, we apply division lemma to 2 and 6, to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6 and 308 is 2

Notice that 2 = HCF(6,2) = HCF(308,6) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 709 > 2, we apply the division lemma to 709 and 2, to get

709 = 2 x 354 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 709 is 1

Notice that 1 = HCF(2,1) = HCF(709,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 42, 66, 308, 709 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 42, 66, 308, 709?

Answer: HCF of 42, 66, 308, 709 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 42, 66, 308, 709 using Euclid's Algorithm?

Answer: For arbitrary numbers 42, 66, 308, 709 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.