Highest Common Factor of 421, 583, 640, 843 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 421, 583, 640, 843 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 421, 583, 640, 843 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 421, 583, 640, 843 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 421, 583, 640, 843 is 1.

HCF(421, 583, 640, 843) = 1

HCF of 421, 583, 640, 843 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 421, 583, 640, 843 is 1.

Highest Common Factor of 421,583,640,843 using Euclid's algorithm

Highest Common Factor of 421,583,640,843 is 1

Step 1: Since 583 > 421, we apply the division lemma to 583 and 421, to get

583 = 421 x 1 + 162

Step 2: Since the reminder 421 ≠ 0, we apply division lemma to 162 and 421, to get

421 = 162 x 2 + 97

Step 3: We consider the new divisor 162 and the new remainder 97, and apply the division lemma to get

162 = 97 x 1 + 65

We consider the new divisor 97 and the new remainder 65,and apply the division lemma to get

97 = 65 x 1 + 32

We consider the new divisor 65 and the new remainder 32,and apply the division lemma to get

65 = 32 x 2 + 1

We consider the new divisor 32 and the new remainder 1,and apply the division lemma to get

32 = 1 x 32 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 421 and 583 is 1

Notice that 1 = HCF(32,1) = HCF(65,32) = HCF(97,65) = HCF(162,97) = HCF(421,162) = HCF(583,421) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 640 > 1, we apply the division lemma to 640 and 1, to get

640 = 1 x 640 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 640 is 1

Notice that 1 = HCF(640,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 843 > 1, we apply the division lemma to 843 and 1, to get

843 = 1 x 843 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 843 is 1

Notice that 1 = HCF(843,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 421, 583, 640, 843 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 421, 583, 640, 843?

Answer: HCF of 421, 583, 640, 843 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 421, 583, 640, 843 using Euclid's Algorithm?

Answer: For arbitrary numbers 421, 583, 640, 843 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.