Highest Common Factor of 423, 940, 747 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 423, 940, 747 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 423, 940, 747 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 423, 940, 747 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 423, 940, 747 is 1.

HCF(423, 940, 747) = 1

HCF of 423, 940, 747 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 423, 940, 747 is 1.

Highest Common Factor of 423,940,747 using Euclid's algorithm

Highest Common Factor of 423,940,747 is 1

Step 1: Since 940 > 423, we apply the division lemma to 940 and 423, to get

940 = 423 x 2 + 94

Step 2: Since the reminder 423 ≠ 0, we apply division lemma to 94 and 423, to get

423 = 94 x 4 + 47

Step 3: We consider the new divisor 94 and the new remainder 47, and apply the division lemma to get

94 = 47 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 47, the HCF of 423 and 940 is 47

Notice that 47 = HCF(94,47) = HCF(423,94) = HCF(940,423) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 747 > 47, we apply the division lemma to 747 and 47, to get

747 = 47 x 15 + 42

Step 2: Since the reminder 47 ≠ 0, we apply division lemma to 42 and 47, to get

47 = 42 x 1 + 5

Step 3: We consider the new divisor 42 and the new remainder 5, and apply the division lemma to get

42 = 5 x 8 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 47 and 747 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(42,5) = HCF(47,42) = HCF(747,47) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 423, 940, 747 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 423, 940, 747?

Answer: HCF of 423, 940, 747 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 423, 940, 747 using Euclid's Algorithm?

Answer: For arbitrary numbers 423, 940, 747 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.