Highest Common Factor of 424, 128, 978, 711 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 424, 128, 978, 711 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 424, 128, 978, 711 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 424, 128, 978, 711 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 424, 128, 978, 711 is 1.

HCF(424, 128, 978, 711) = 1

HCF of 424, 128, 978, 711 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 424, 128, 978, 711 is 1.

Highest Common Factor of 424,128,978,711 using Euclid's algorithm

Highest Common Factor of 424,128,978,711 is 1

Step 1: Since 424 > 128, we apply the division lemma to 424 and 128, to get

424 = 128 x 3 + 40

Step 2: Since the reminder 128 ≠ 0, we apply division lemma to 40 and 128, to get

128 = 40 x 3 + 8

Step 3: We consider the new divisor 40 and the new remainder 8, and apply the division lemma to get

40 = 8 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 8, the HCF of 424 and 128 is 8

Notice that 8 = HCF(40,8) = HCF(128,40) = HCF(424,128) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 978 > 8, we apply the division lemma to 978 and 8, to get

978 = 8 x 122 + 2

Step 2: Since the reminder 8 ≠ 0, we apply division lemma to 2 and 8, to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 8 and 978 is 2

Notice that 2 = HCF(8,2) = HCF(978,8) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 711 > 2, we apply the division lemma to 711 and 2, to get

711 = 2 x 355 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 711 is 1

Notice that 1 = HCF(2,1) = HCF(711,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 424, 128, 978, 711 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 424, 128, 978, 711?

Answer: HCF of 424, 128, 978, 711 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 424, 128, 978, 711 using Euclid's Algorithm?

Answer: For arbitrary numbers 424, 128, 978, 711 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.