Highest Common Factor of 425, 975, 525, 289 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 425, 975, 525, 289 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 425, 975, 525, 289 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 425, 975, 525, 289 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 425, 975, 525, 289 is 1.

HCF(425, 975, 525, 289) = 1

HCF of 425, 975, 525, 289 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 425, 975, 525, 289 is 1.

Highest Common Factor of 425,975,525,289 using Euclid's algorithm

Highest Common Factor of 425,975,525,289 is 1

Step 1: Since 975 > 425, we apply the division lemma to 975 and 425, to get

975 = 425 x 2 + 125

Step 2: Since the reminder 425 ≠ 0, we apply division lemma to 125 and 425, to get

425 = 125 x 3 + 50

Step 3: We consider the new divisor 125 and the new remainder 50, and apply the division lemma to get

125 = 50 x 2 + 25

We consider the new divisor 50 and the new remainder 25, and apply the division lemma to get

50 = 25 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 25, the HCF of 425 and 975 is 25

Notice that 25 = HCF(50,25) = HCF(125,50) = HCF(425,125) = HCF(975,425) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 525 > 25, we apply the division lemma to 525 and 25, to get

525 = 25 x 21 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 25, the HCF of 25 and 525 is 25

Notice that 25 = HCF(525,25) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 289 > 25, we apply the division lemma to 289 and 25, to get

289 = 25 x 11 + 14

Step 2: Since the reminder 25 ≠ 0, we apply division lemma to 14 and 25, to get

25 = 14 x 1 + 11

Step 3: We consider the new divisor 14 and the new remainder 11, and apply the division lemma to get

14 = 11 x 1 + 3

We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 25 and 289 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(14,11) = HCF(25,14) = HCF(289,25) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 425, 975, 525, 289 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 425, 975, 525, 289?

Answer: HCF of 425, 975, 525, 289 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 425, 975, 525, 289 using Euclid's Algorithm?

Answer: For arbitrary numbers 425, 975, 525, 289 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.