Highest Common Factor of 426, 639, 675 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 426, 639, 675 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 426, 639, 675 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 426, 639, 675 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 426, 639, 675 is 3.

HCF(426, 639, 675) = 3

HCF of 426, 639, 675 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 426, 639, 675 is 3.

Highest Common Factor of 426,639,675 using Euclid's algorithm

Highest Common Factor of 426,639,675 is 3

Step 1: Since 639 > 426, we apply the division lemma to 639 and 426, to get

639 = 426 x 1 + 213

Step 2: Since the reminder 426 ≠ 0, we apply division lemma to 213 and 426, to get

426 = 213 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 213, the HCF of 426 and 639 is 213

Notice that 213 = HCF(426,213) = HCF(639,426) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 675 > 213, we apply the division lemma to 675 and 213, to get

675 = 213 x 3 + 36

Step 2: Since the reminder 213 ≠ 0, we apply division lemma to 36 and 213, to get

213 = 36 x 5 + 33

Step 3: We consider the new divisor 36 and the new remainder 33, and apply the division lemma to get

36 = 33 x 1 + 3

We consider the new divisor 33 and the new remainder 3, and apply the division lemma to get

33 = 3 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 213 and 675 is 3

Notice that 3 = HCF(33,3) = HCF(36,33) = HCF(213,36) = HCF(675,213) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 426, 639, 675 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 426, 639, 675?

Answer: HCF of 426, 639, 675 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 426, 639, 675 using Euclid's Algorithm?

Answer: For arbitrary numbers 426, 639, 675 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.