Highest Common Factor of 4283, 3634 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4283, 3634 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4283, 3634 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4283, 3634 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4283, 3634 is 1.

HCF(4283, 3634) = 1

HCF of 4283, 3634 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4283, 3634 is 1.

Highest Common Factor of 4283,3634 using Euclid's algorithm

Highest Common Factor of 4283,3634 is 1

Step 1: Since 4283 > 3634, we apply the division lemma to 4283 and 3634, to get

4283 = 3634 x 1 + 649

Step 2: Since the reminder 3634 ≠ 0, we apply division lemma to 649 and 3634, to get

3634 = 649 x 5 + 389

Step 3: We consider the new divisor 649 and the new remainder 389, and apply the division lemma to get

649 = 389 x 1 + 260

We consider the new divisor 389 and the new remainder 260,and apply the division lemma to get

389 = 260 x 1 + 129

We consider the new divisor 260 and the new remainder 129,and apply the division lemma to get

260 = 129 x 2 + 2

We consider the new divisor 129 and the new remainder 2,and apply the division lemma to get

129 = 2 x 64 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4283 and 3634 is 1

Notice that 1 = HCF(2,1) = HCF(129,2) = HCF(260,129) = HCF(389,260) = HCF(649,389) = HCF(3634,649) = HCF(4283,3634) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4283, 3634 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4283, 3634?

Answer: HCF of 4283, 3634 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4283, 3634 using Euclid's Algorithm?

Answer: For arbitrary numbers 4283, 3634 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.