Highest Common Factor of 429, 7644 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 429, 7644 i.e. 39 the largest integer that leaves a remainder zero for all numbers.

HCF of 429, 7644 is 39 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 429, 7644 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 429, 7644 is 39.

HCF(429, 7644) = 39

HCF of 429, 7644 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 429, 7644 is 39.

Highest Common Factor of 429,7644 using Euclid's algorithm

Highest Common Factor of 429,7644 is 39

Step 1: Since 7644 > 429, we apply the division lemma to 7644 and 429, to get

7644 = 429 x 17 + 351

Step 2: Since the reminder 429 ≠ 0, we apply division lemma to 351 and 429, to get

429 = 351 x 1 + 78

Step 3: We consider the new divisor 351 and the new remainder 78, and apply the division lemma to get

351 = 78 x 4 + 39

We consider the new divisor 78 and the new remainder 39, and apply the division lemma to get

78 = 39 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 39, the HCF of 429 and 7644 is 39

Notice that 39 = HCF(78,39) = HCF(351,78) = HCF(429,351) = HCF(7644,429) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 429, 7644 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 429, 7644?

Answer: HCF of 429, 7644 is 39 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 429, 7644 using Euclid's Algorithm?

Answer: For arbitrary numbers 429, 7644 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.