Highest Common Factor of 4298, 9463 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4298, 9463 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4298, 9463 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4298, 9463 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4298, 9463 is 1.

HCF(4298, 9463) = 1

HCF of 4298, 9463 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4298, 9463 is 1.

Highest Common Factor of 4298,9463 using Euclid's algorithm

Highest Common Factor of 4298,9463 is 1

Step 1: Since 9463 > 4298, we apply the division lemma to 9463 and 4298, to get

9463 = 4298 x 2 + 867

Step 2: Since the reminder 4298 ≠ 0, we apply division lemma to 867 and 4298, to get

4298 = 867 x 4 + 830

Step 3: We consider the new divisor 867 and the new remainder 830, and apply the division lemma to get

867 = 830 x 1 + 37

We consider the new divisor 830 and the new remainder 37,and apply the division lemma to get

830 = 37 x 22 + 16

We consider the new divisor 37 and the new remainder 16,and apply the division lemma to get

37 = 16 x 2 + 5

We consider the new divisor 16 and the new remainder 5,and apply the division lemma to get

16 = 5 x 3 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4298 and 9463 is 1

Notice that 1 = HCF(5,1) = HCF(16,5) = HCF(37,16) = HCF(830,37) = HCF(867,830) = HCF(4298,867) = HCF(9463,4298) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4298, 9463 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4298, 9463?

Answer: HCF of 4298, 9463 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4298, 9463 using Euclid's Algorithm?

Answer: For arbitrary numbers 4298, 9463 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.