Highest Common Factor of 432, 320, 844 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 432, 320, 844 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 432, 320, 844 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 432, 320, 844 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 432, 320, 844 is 4.

HCF(432, 320, 844) = 4

HCF of 432, 320, 844 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 432, 320, 844 is 4.

Highest Common Factor of 432,320,844 using Euclid's algorithm

Highest Common Factor of 432,320,844 is 4

Step 1: Since 432 > 320, we apply the division lemma to 432 and 320, to get

432 = 320 x 1 + 112

Step 2: Since the reminder 320 ≠ 0, we apply division lemma to 112 and 320, to get

320 = 112 x 2 + 96

Step 3: We consider the new divisor 112 and the new remainder 96, and apply the division lemma to get

112 = 96 x 1 + 16

We consider the new divisor 96 and the new remainder 16, and apply the division lemma to get

96 = 16 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 16, the HCF of 432 and 320 is 16

Notice that 16 = HCF(96,16) = HCF(112,96) = HCF(320,112) = HCF(432,320) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 844 > 16, we apply the division lemma to 844 and 16, to get

844 = 16 x 52 + 12

Step 2: Since the reminder 16 ≠ 0, we apply division lemma to 12 and 16, to get

16 = 12 x 1 + 4

Step 3: We consider the new divisor 12 and the new remainder 4, and apply the division lemma to get

12 = 4 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 16 and 844 is 4

Notice that 4 = HCF(12,4) = HCF(16,12) = HCF(844,16) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 432, 320, 844 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 432, 320, 844?

Answer: HCF of 432, 320, 844 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 432, 320, 844 using Euclid's Algorithm?

Answer: For arbitrary numbers 432, 320, 844 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.