Highest Common Factor of 434, 341, 118 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 434, 341, 118 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 434, 341, 118 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 434, 341, 118 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 434, 341, 118 is 1.

HCF(434, 341, 118) = 1

HCF of 434, 341, 118 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 434, 341, 118 is 1.

Highest Common Factor of 434,341,118 using Euclid's algorithm

Highest Common Factor of 434,341,118 is 1

Step 1: Since 434 > 341, we apply the division lemma to 434 and 341, to get

434 = 341 x 1 + 93

Step 2: Since the reminder 341 ≠ 0, we apply division lemma to 93 and 341, to get

341 = 93 x 3 + 62

Step 3: We consider the new divisor 93 and the new remainder 62, and apply the division lemma to get

93 = 62 x 1 + 31

We consider the new divisor 62 and the new remainder 31, and apply the division lemma to get

62 = 31 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 31, the HCF of 434 and 341 is 31

Notice that 31 = HCF(62,31) = HCF(93,62) = HCF(341,93) = HCF(434,341) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 118 > 31, we apply the division lemma to 118 and 31, to get

118 = 31 x 3 + 25

Step 2: Since the reminder 31 ≠ 0, we apply division lemma to 25 and 31, to get

31 = 25 x 1 + 6

Step 3: We consider the new divisor 25 and the new remainder 6, and apply the division lemma to get

25 = 6 x 4 + 1

We consider the new divisor 6 and the new remainder 1, and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 31 and 118 is 1

Notice that 1 = HCF(6,1) = HCF(25,6) = HCF(31,25) = HCF(118,31) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 434, 341, 118 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 434, 341, 118?

Answer: HCF of 434, 341, 118 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 434, 341, 118 using Euclid's Algorithm?

Answer: For arbitrary numbers 434, 341, 118 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.