Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 437, 2017 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 437, 2017 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 437, 2017 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 437, 2017 is 1.
HCF(437, 2017) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 437, 2017 is 1.
Step 1: Since 2017 > 437, we apply the division lemma to 2017 and 437, to get
2017 = 437 x 4 + 269
Step 2: Since the reminder 437 ≠ 0, we apply division lemma to 269 and 437, to get
437 = 269 x 1 + 168
Step 3: We consider the new divisor 269 and the new remainder 168, and apply the division lemma to get
269 = 168 x 1 + 101
We consider the new divisor 168 and the new remainder 101,and apply the division lemma to get
168 = 101 x 1 + 67
We consider the new divisor 101 and the new remainder 67,and apply the division lemma to get
101 = 67 x 1 + 34
We consider the new divisor 67 and the new remainder 34,and apply the division lemma to get
67 = 34 x 1 + 33
We consider the new divisor 34 and the new remainder 33,and apply the division lemma to get
34 = 33 x 1 + 1
We consider the new divisor 33 and the new remainder 1,and apply the division lemma to get
33 = 1 x 33 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 437 and 2017 is 1
Notice that 1 = HCF(33,1) = HCF(34,33) = HCF(67,34) = HCF(101,67) = HCF(168,101) = HCF(269,168) = HCF(437,269) = HCF(2017,437) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 437, 2017?
Answer: HCF of 437, 2017 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 437, 2017 using Euclid's Algorithm?
Answer: For arbitrary numbers 437, 2017 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.