Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 438, 713, 64 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 438, 713, 64 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 438, 713, 64 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 438, 713, 64 is 1.
HCF(438, 713, 64) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 438, 713, 64 is 1.
Step 1: Since 713 > 438, we apply the division lemma to 713 and 438, to get
713 = 438 x 1 + 275
Step 2: Since the reminder 438 ≠ 0, we apply division lemma to 275 and 438, to get
438 = 275 x 1 + 163
Step 3: We consider the new divisor 275 and the new remainder 163, and apply the division lemma to get
275 = 163 x 1 + 112
We consider the new divisor 163 and the new remainder 112,and apply the division lemma to get
163 = 112 x 1 + 51
We consider the new divisor 112 and the new remainder 51,and apply the division lemma to get
112 = 51 x 2 + 10
We consider the new divisor 51 and the new remainder 10,and apply the division lemma to get
51 = 10 x 5 + 1
We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get
10 = 1 x 10 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 438 and 713 is 1
Notice that 1 = HCF(10,1) = HCF(51,10) = HCF(112,51) = HCF(163,112) = HCF(275,163) = HCF(438,275) = HCF(713,438) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 64 > 1, we apply the division lemma to 64 and 1, to get
64 = 1 x 64 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 64 is 1
Notice that 1 = HCF(64,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 438, 713, 64?
Answer: HCF of 438, 713, 64 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 438, 713, 64 using Euclid's Algorithm?
Answer: For arbitrary numbers 438, 713, 64 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.