Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 439, 567, 557 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 439, 567, 557 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 439, 567, 557 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 439, 567, 557 is 1.
HCF(439, 567, 557) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 439, 567, 557 is 1.
Step 1: Since 567 > 439, we apply the division lemma to 567 and 439, to get
567 = 439 x 1 + 128
Step 2: Since the reminder 439 ≠ 0, we apply division lemma to 128 and 439, to get
439 = 128 x 3 + 55
Step 3: We consider the new divisor 128 and the new remainder 55, and apply the division lemma to get
128 = 55 x 2 + 18
We consider the new divisor 55 and the new remainder 18,and apply the division lemma to get
55 = 18 x 3 + 1
We consider the new divisor 18 and the new remainder 1,and apply the division lemma to get
18 = 1 x 18 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 439 and 567 is 1
Notice that 1 = HCF(18,1) = HCF(55,18) = HCF(128,55) = HCF(439,128) = HCF(567,439) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 557 > 1, we apply the division lemma to 557 and 1, to get
557 = 1 x 557 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 557 is 1
Notice that 1 = HCF(557,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 439, 567, 557?
Answer: HCF of 439, 567, 557 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 439, 567, 557 using Euclid's Algorithm?
Answer: For arbitrary numbers 439, 567, 557 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.