Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 441, 713, 191 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 441, 713, 191 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 441, 713, 191 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 441, 713, 191 is 1.
HCF(441, 713, 191) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 441, 713, 191 is 1.
Step 1: Since 713 > 441, we apply the division lemma to 713 and 441, to get
713 = 441 x 1 + 272
Step 2: Since the reminder 441 ≠ 0, we apply division lemma to 272 and 441, to get
441 = 272 x 1 + 169
Step 3: We consider the new divisor 272 and the new remainder 169, and apply the division lemma to get
272 = 169 x 1 + 103
We consider the new divisor 169 and the new remainder 103,and apply the division lemma to get
169 = 103 x 1 + 66
We consider the new divisor 103 and the new remainder 66,and apply the division lemma to get
103 = 66 x 1 + 37
We consider the new divisor 66 and the new remainder 37,and apply the division lemma to get
66 = 37 x 1 + 29
We consider the new divisor 37 and the new remainder 29,and apply the division lemma to get
37 = 29 x 1 + 8
We consider the new divisor 29 and the new remainder 8,and apply the division lemma to get
29 = 8 x 3 + 5
We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get
8 = 5 x 1 + 3
We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get
5 = 3 x 1 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 441 and 713 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(29,8) = HCF(37,29) = HCF(66,37) = HCF(103,66) = HCF(169,103) = HCF(272,169) = HCF(441,272) = HCF(713,441) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 191 > 1, we apply the division lemma to 191 and 1, to get
191 = 1 x 191 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 191 is 1
Notice that 1 = HCF(191,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 441, 713, 191?
Answer: HCF of 441, 713, 191 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 441, 713, 191 using Euclid's Algorithm?
Answer: For arbitrary numbers 441, 713, 191 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.