Highest Common Factor of 441, 942, 140 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 441, 942, 140 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 441, 942, 140 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 441, 942, 140 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 441, 942, 140 is 1.

HCF(441, 942, 140) = 1

HCF of 441, 942, 140 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 441, 942, 140 is 1.

Highest Common Factor of 441,942,140 using Euclid's algorithm

Highest Common Factor of 441,942,140 is 1

Step 1: Since 942 > 441, we apply the division lemma to 942 and 441, to get

942 = 441 x 2 + 60

Step 2: Since the reminder 441 ≠ 0, we apply division lemma to 60 and 441, to get

441 = 60 x 7 + 21

Step 3: We consider the new divisor 60 and the new remainder 21, and apply the division lemma to get

60 = 21 x 2 + 18

We consider the new divisor 21 and the new remainder 18,and apply the division lemma to get

21 = 18 x 1 + 3

We consider the new divisor 18 and the new remainder 3,and apply the division lemma to get

18 = 3 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 441 and 942 is 3

Notice that 3 = HCF(18,3) = HCF(21,18) = HCF(60,21) = HCF(441,60) = HCF(942,441) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 140 > 3, we apply the division lemma to 140 and 3, to get

140 = 3 x 46 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 140 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(140,3) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 441, 942, 140 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 441, 942, 140?

Answer: HCF of 441, 942, 140 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 441, 942, 140 using Euclid's Algorithm?

Answer: For arbitrary numbers 441, 942, 140 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.