Highest Common Factor of 443, 721 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 443, 721 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 443, 721 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 443, 721 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 443, 721 is 1.

HCF(443, 721) = 1

HCF of 443, 721 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 443, 721 is 1.

Highest Common Factor of 443,721 using Euclid's algorithm

Highest Common Factor of 443,721 is 1

Step 1: Since 721 > 443, we apply the division lemma to 721 and 443, to get

721 = 443 x 1 + 278

Step 2: Since the reminder 443 ≠ 0, we apply division lemma to 278 and 443, to get

443 = 278 x 1 + 165

Step 3: We consider the new divisor 278 and the new remainder 165, and apply the division lemma to get

278 = 165 x 1 + 113

We consider the new divisor 165 and the new remainder 113,and apply the division lemma to get

165 = 113 x 1 + 52

We consider the new divisor 113 and the new remainder 52,and apply the division lemma to get

113 = 52 x 2 + 9

We consider the new divisor 52 and the new remainder 9,and apply the division lemma to get

52 = 9 x 5 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 443 and 721 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(52,9) = HCF(113,52) = HCF(165,113) = HCF(278,165) = HCF(443,278) = HCF(721,443) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 443, 721 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 443, 721?

Answer: HCF of 443, 721 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 443, 721 using Euclid's Algorithm?

Answer: For arbitrary numbers 443, 721 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.