Highest Common Factor of 444, 456, 795, 269 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 444, 456, 795, 269 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 444, 456, 795, 269 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 444, 456, 795, 269 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 444, 456, 795, 269 is 1.

HCF(444, 456, 795, 269) = 1

HCF of 444, 456, 795, 269 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 444, 456, 795, 269 is 1.

Highest Common Factor of 444,456,795,269 using Euclid's algorithm

Highest Common Factor of 444,456,795,269 is 1

Step 1: Since 456 > 444, we apply the division lemma to 456 and 444, to get

456 = 444 x 1 + 12

Step 2: Since the reminder 444 ≠ 0, we apply division lemma to 12 and 444, to get

444 = 12 x 37 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 12, the HCF of 444 and 456 is 12

Notice that 12 = HCF(444,12) = HCF(456,444) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 795 > 12, we apply the division lemma to 795 and 12, to get

795 = 12 x 66 + 3

Step 2: Since the reminder 12 ≠ 0, we apply division lemma to 3 and 12, to get

12 = 3 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 12 and 795 is 3

Notice that 3 = HCF(12,3) = HCF(795,12) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 269 > 3, we apply the division lemma to 269 and 3, to get

269 = 3 x 89 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 269 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(269,3) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 444, 456, 795, 269 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 444, 456, 795, 269?

Answer: HCF of 444, 456, 795, 269 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 444, 456, 795, 269 using Euclid's Algorithm?

Answer: For arbitrary numbers 444, 456, 795, 269 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.