Highest Common Factor of 4460, 1181 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4460, 1181 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4460, 1181 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4460, 1181 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4460, 1181 is 1.

HCF(4460, 1181) = 1

HCF of 4460, 1181 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4460, 1181 is 1.

Highest Common Factor of 4460,1181 using Euclid's algorithm

Highest Common Factor of 4460,1181 is 1

Step 1: Since 4460 > 1181, we apply the division lemma to 4460 and 1181, to get

4460 = 1181 x 3 + 917

Step 2: Since the reminder 1181 ≠ 0, we apply division lemma to 917 and 1181, to get

1181 = 917 x 1 + 264

Step 3: We consider the new divisor 917 and the new remainder 264, and apply the division lemma to get

917 = 264 x 3 + 125

We consider the new divisor 264 and the new remainder 125,and apply the division lemma to get

264 = 125 x 2 + 14

We consider the new divisor 125 and the new remainder 14,and apply the division lemma to get

125 = 14 x 8 + 13

We consider the new divisor 14 and the new remainder 13,and apply the division lemma to get

14 = 13 x 1 + 1

We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4460 and 1181 is 1

Notice that 1 = HCF(13,1) = HCF(14,13) = HCF(125,14) = HCF(264,125) = HCF(917,264) = HCF(1181,917) = HCF(4460,1181) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4460, 1181 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4460, 1181?

Answer: HCF of 4460, 1181 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4460, 1181 using Euclid's Algorithm?

Answer: For arbitrary numbers 4460, 1181 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.