Highest Common Factor of 448, 277 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 448, 277 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 448, 277 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 448, 277 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 448, 277 is 1.

HCF(448, 277) = 1

HCF of 448, 277 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 448, 277 is 1.

Highest Common Factor of 448,277 using Euclid's algorithm

Highest Common Factor of 448,277 is 1

Step 1: Since 448 > 277, we apply the division lemma to 448 and 277, to get

448 = 277 x 1 + 171

Step 2: Since the reminder 277 ≠ 0, we apply division lemma to 171 and 277, to get

277 = 171 x 1 + 106

Step 3: We consider the new divisor 171 and the new remainder 106, and apply the division lemma to get

171 = 106 x 1 + 65

We consider the new divisor 106 and the new remainder 65,and apply the division lemma to get

106 = 65 x 1 + 41

We consider the new divisor 65 and the new remainder 41,and apply the division lemma to get

65 = 41 x 1 + 24

We consider the new divisor 41 and the new remainder 24,and apply the division lemma to get

41 = 24 x 1 + 17

We consider the new divisor 24 and the new remainder 17,and apply the division lemma to get

24 = 17 x 1 + 7

We consider the new divisor 17 and the new remainder 7,and apply the division lemma to get

17 = 7 x 2 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 448 and 277 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(17,7) = HCF(24,17) = HCF(41,24) = HCF(65,41) = HCF(106,65) = HCF(171,106) = HCF(277,171) = HCF(448,277) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 448, 277 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 448, 277?

Answer: HCF of 448, 277 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 448, 277 using Euclid's Algorithm?

Answer: For arbitrary numbers 448, 277 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.