Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 448, 711 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 448, 711 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 448, 711 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 448, 711 is 1.
HCF(448, 711) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 448, 711 is 1.
Step 1: Since 711 > 448, we apply the division lemma to 711 and 448, to get
711 = 448 x 1 + 263
Step 2: Since the reminder 448 ≠ 0, we apply division lemma to 263 and 448, to get
448 = 263 x 1 + 185
Step 3: We consider the new divisor 263 and the new remainder 185, and apply the division lemma to get
263 = 185 x 1 + 78
We consider the new divisor 185 and the new remainder 78,and apply the division lemma to get
185 = 78 x 2 + 29
We consider the new divisor 78 and the new remainder 29,and apply the division lemma to get
78 = 29 x 2 + 20
We consider the new divisor 29 and the new remainder 20,and apply the division lemma to get
29 = 20 x 1 + 9
We consider the new divisor 20 and the new remainder 9,and apply the division lemma to get
20 = 9 x 2 + 2
We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get
9 = 2 x 4 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 448 and 711 is 1
Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(20,9) = HCF(29,20) = HCF(78,29) = HCF(185,78) = HCF(263,185) = HCF(448,263) = HCF(711,448) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 448, 711?
Answer: HCF of 448, 711 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 448, 711 using Euclid's Algorithm?
Answer: For arbitrary numbers 448, 711 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.