Highest Common Factor of 450, 646, 586 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 450, 646, 586 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 450, 646, 586 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 450, 646, 586 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 450, 646, 586 is 2.

HCF(450, 646, 586) = 2

HCF of 450, 646, 586 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 450, 646, 586 is 2.

Highest Common Factor of 450,646,586 using Euclid's algorithm

Highest Common Factor of 450,646,586 is 2

Step 1: Since 646 > 450, we apply the division lemma to 646 and 450, to get

646 = 450 x 1 + 196

Step 2: Since the reminder 450 ≠ 0, we apply division lemma to 196 and 450, to get

450 = 196 x 2 + 58

Step 3: We consider the new divisor 196 and the new remainder 58, and apply the division lemma to get

196 = 58 x 3 + 22

We consider the new divisor 58 and the new remainder 22,and apply the division lemma to get

58 = 22 x 2 + 14

We consider the new divisor 22 and the new remainder 14,and apply the division lemma to get

22 = 14 x 1 + 8

We consider the new divisor 14 and the new remainder 8,and apply the division lemma to get

14 = 8 x 1 + 6

We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get

8 = 6 x 1 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 450 and 646 is 2

Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(14,8) = HCF(22,14) = HCF(58,22) = HCF(196,58) = HCF(450,196) = HCF(646,450) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 586 > 2, we apply the division lemma to 586 and 2, to get

586 = 2 x 293 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 586 is 2

Notice that 2 = HCF(586,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 450, 646, 586 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 450, 646, 586?

Answer: HCF of 450, 646, 586 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 450, 646, 586 using Euclid's Algorithm?

Answer: For arbitrary numbers 450, 646, 586 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.