Highest Common Factor of 4505, 8887 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4505, 8887 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4505, 8887 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4505, 8887 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4505, 8887 is 1.

HCF(4505, 8887) = 1

HCF of 4505, 8887 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4505, 8887 is 1.

Highest Common Factor of 4505,8887 using Euclid's algorithm

Highest Common Factor of 4505,8887 is 1

Step 1: Since 8887 > 4505, we apply the division lemma to 8887 and 4505, to get

8887 = 4505 x 1 + 4382

Step 2: Since the reminder 4505 ≠ 0, we apply division lemma to 4382 and 4505, to get

4505 = 4382 x 1 + 123

Step 3: We consider the new divisor 4382 and the new remainder 123, and apply the division lemma to get

4382 = 123 x 35 + 77

We consider the new divisor 123 and the new remainder 77,and apply the division lemma to get

123 = 77 x 1 + 46

We consider the new divisor 77 and the new remainder 46,and apply the division lemma to get

77 = 46 x 1 + 31

We consider the new divisor 46 and the new remainder 31,and apply the division lemma to get

46 = 31 x 1 + 15

We consider the new divisor 31 and the new remainder 15,and apply the division lemma to get

31 = 15 x 2 + 1

We consider the new divisor 15 and the new remainder 1,and apply the division lemma to get

15 = 1 x 15 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4505 and 8887 is 1

Notice that 1 = HCF(15,1) = HCF(31,15) = HCF(46,31) = HCF(77,46) = HCF(123,77) = HCF(4382,123) = HCF(4505,4382) = HCF(8887,4505) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4505, 8887 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4505, 8887?

Answer: HCF of 4505, 8887 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4505, 8887 using Euclid's Algorithm?

Answer: For arbitrary numbers 4505, 8887 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.