Highest Common Factor of 4508, 6674 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4508, 6674 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 4508, 6674 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4508, 6674 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4508, 6674 is 2.

HCF(4508, 6674) = 2

HCF of 4508, 6674 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4508, 6674 is 2.

Highest Common Factor of 4508,6674 using Euclid's algorithm

Highest Common Factor of 4508,6674 is 2

Step 1: Since 6674 > 4508, we apply the division lemma to 6674 and 4508, to get

6674 = 4508 x 1 + 2166

Step 2: Since the reminder 4508 ≠ 0, we apply division lemma to 2166 and 4508, to get

4508 = 2166 x 2 + 176

Step 3: We consider the new divisor 2166 and the new remainder 176, and apply the division lemma to get

2166 = 176 x 12 + 54

We consider the new divisor 176 and the new remainder 54,and apply the division lemma to get

176 = 54 x 3 + 14

We consider the new divisor 54 and the new remainder 14,and apply the division lemma to get

54 = 14 x 3 + 12

We consider the new divisor 14 and the new remainder 12,and apply the division lemma to get

14 = 12 x 1 + 2

We consider the new divisor 12 and the new remainder 2,and apply the division lemma to get

12 = 2 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 4508 and 6674 is 2

Notice that 2 = HCF(12,2) = HCF(14,12) = HCF(54,14) = HCF(176,54) = HCF(2166,176) = HCF(4508,2166) = HCF(6674,4508) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4508, 6674 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4508, 6674?

Answer: HCF of 4508, 6674 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4508, 6674 using Euclid's Algorithm?

Answer: For arbitrary numbers 4508, 6674 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.