Highest Common Factor of 452, 281 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 452, 281 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 452, 281 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 452, 281 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 452, 281 is 1.

HCF(452, 281) = 1

HCF of 452, 281 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 452, 281 is 1.

Highest Common Factor of 452,281 using Euclid's algorithm

Highest Common Factor of 452,281 is 1

Step 1: Since 452 > 281, we apply the division lemma to 452 and 281, to get

452 = 281 x 1 + 171

Step 2: Since the reminder 281 ≠ 0, we apply division lemma to 171 and 281, to get

281 = 171 x 1 + 110

Step 3: We consider the new divisor 171 and the new remainder 110, and apply the division lemma to get

171 = 110 x 1 + 61

We consider the new divisor 110 and the new remainder 61,and apply the division lemma to get

110 = 61 x 1 + 49

We consider the new divisor 61 and the new remainder 49,and apply the division lemma to get

61 = 49 x 1 + 12

We consider the new divisor 49 and the new remainder 12,and apply the division lemma to get

49 = 12 x 4 + 1

We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 452 and 281 is 1

Notice that 1 = HCF(12,1) = HCF(49,12) = HCF(61,49) = HCF(110,61) = HCF(171,110) = HCF(281,171) = HCF(452,281) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 452, 281 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 452, 281?

Answer: HCF of 452, 281 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 452, 281 using Euclid's Algorithm?

Answer: For arbitrary numbers 452, 281 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.