Highest Common Factor of 453, 733, 536 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 453, 733, 536 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 453, 733, 536 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 453, 733, 536 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 453, 733, 536 is 1.

HCF(453, 733, 536) = 1

HCF of 453, 733, 536 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 453, 733, 536 is 1.

Highest Common Factor of 453,733,536 using Euclid's algorithm

Highest Common Factor of 453,733,536 is 1

Step 1: Since 733 > 453, we apply the division lemma to 733 and 453, to get

733 = 453 x 1 + 280

Step 2: Since the reminder 453 ≠ 0, we apply division lemma to 280 and 453, to get

453 = 280 x 1 + 173

Step 3: We consider the new divisor 280 and the new remainder 173, and apply the division lemma to get

280 = 173 x 1 + 107

We consider the new divisor 173 and the new remainder 107,and apply the division lemma to get

173 = 107 x 1 + 66

We consider the new divisor 107 and the new remainder 66,and apply the division lemma to get

107 = 66 x 1 + 41

We consider the new divisor 66 and the new remainder 41,and apply the division lemma to get

66 = 41 x 1 + 25

We consider the new divisor 41 and the new remainder 25,and apply the division lemma to get

41 = 25 x 1 + 16

We consider the new divisor 25 and the new remainder 16,and apply the division lemma to get

25 = 16 x 1 + 9

We consider the new divisor 16 and the new remainder 9,and apply the division lemma to get

16 = 9 x 1 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 453 and 733 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(16,9) = HCF(25,16) = HCF(41,25) = HCF(66,41) = HCF(107,66) = HCF(173,107) = HCF(280,173) = HCF(453,280) = HCF(733,453) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 536 > 1, we apply the division lemma to 536 and 1, to get

536 = 1 x 536 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 536 is 1

Notice that 1 = HCF(536,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 453, 733, 536 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 453, 733, 536?

Answer: HCF of 453, 733, 536 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 453, 733, 536 using Euclid's Algorithm?

Answer: For arbitrary numbers 453, 733, 536 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.