Highest Common Factor of 4531, 5866 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 4531, 5866 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 4531, 5866 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 4531, 5866 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 4531, 5866 is 1.

HCF(4531, 5866) = 1

HCF of 4531, 5866 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 4531, 5866 is 1.

Highest Common Factor of 4531,5866 using Euclid's algorithm

Highest Common Factor of 4531,5866 is 1

Step 1: Since 5866 > 4531, we apply the division lemma to 5866 and 4531, to get

5866 = 4531 x 1 + 1335

Step 2: Since the reminder 4531 ≠ 0, we apply division lemma to 1335 and 4531, to get

4531 = 1335 x 3 + 526

Step 3: We consider the new divisor 1335 and the new remainder 526, and apply the division lemma to get

1335 = 526 x 2 + 283

We consider the new divisor 526 and the new remainder 283,and apply the division lemma to get

526 = 283 x 1 + 243

We consider the new divisor 283 and the new remainder 243,and apply the division lemma to get

283 = 243 x 1 + 40

We consider the new divisor 243 and the new remainder 40,and apply the division lemma to get

243 = 40 x 6 + 3

We consider the new divisor 40 and the new remainder 3,and apply the division lemma to get

40 = 3 x 13 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4531 and 5866 is 1

Notice that 1 = HCF(3,1) = HCF(40,3) = HCF(243,40) = HCF(283,243) = HCF(526,283) = HCF(1335,526) = HCF(4531,1335) = HCF(5866,4531) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 4531, 5866 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 4531, 5866?

Answer: HCF of 4531, 5866 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 4531, 5866 using Euclid's Algorithm?

Answer: For arbitrary numbers 4531, 5866 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.