Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 454, 703 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 454, 703 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 454, 703 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 454, 703 is 1.
HCF(454, 703) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 454, 703 is 1.
Step 1: Since 703 > 454, we apply the division lemma to 703 and 454, to get
703 = 454 x 1 + 249
Step 2: Since the reminder 454 ≠ 0, we apply division lemma to 249 and 454, to get
454 = 249 x 1 + 205
Step 3: We consider the new divisor 249 and the new remainder 205, and apply the division lemma to get
249 = 205 x 1 + 44
We consider the new divisor 205 and the new remainder 44,and apply the division lemma to get
205 = 44 x 4 + 29
We consider the new divisor 44 and the new remainder 29,and apply the division lemma to get
44 = 29 x 1 + 15
We consider the new divisor 29 and the new remainder 15,and apply the division lemma to get
29 = 15 x 1 + 14
We consider the new divisor 15 and the new remainder 14,and apply the division lemma to get
15 = 14 x 1 + 1
We consider the new divisor 14 and the new remainder 1,and apply the division lemma to get
14 = 1 x 14 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 454 and 703 is 1
Notice that 1 = HCF(14,1) = HCF(15,14) = HCF(29,15) = HCF(44,29) = HCF(205,44) = HCF(249,205) = HCF(454,249) = HCF(703,454) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 454, 703?
Answer: HCF of 454, 703 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 454, 703 using Euclid's Algorithm?
Answer: For arbitrary numbers 454, 703 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.